2,984 research outputs found

    Coherent field emission image of graphene predicted with a microscopic theory

    Full text link
    Electrons in the mono-layer atomic sheet of graphene have a long coherence length of the order of micrometers. We will show that this coherence is transmitted into the vacuum via electric field assisted electron emission from the graphene edge. The emission current density is given analytically. The parity of the carbon pi-electrons leads to an image whose center is dark as a result of interference. A dragonfly pattern with a dark body perpendicular to the edge is predicted for the armchair edge whose emission current density is vanishing with the mixing angle of the pseudo-spin. The interference pattern may be observed up to temperatures of thousand Kelvin as evidence of coherent field emission. Moreover, this phenomenon leads to a novel coherent electron line source that can produce interference patterns of extended objects with linear sizes comparable to the length of the graphene edge.Comment: 6 pages, 3 figure

    Physisorption of an electron in deep surface potentials off a dielectric surface

    Full text link
    We study phonon-mediated adsorption and desorption of an electron at dielectric surfaces with deep polarization-induced surface potentials where multi-phonon transitions are responsible for electron energy relaxation. Focusing on multi-phonon processes due to the nonlinearity of the coupling between the external electron and the acoustic bulk phonon triggering the transitions between surface states, we calculate electron desorption times for graphite, MgO, CaO, (\text{Al}_2\text{O}_3), and (\text{SiO}_2) and electron sticking coefficients for (\text{Al}_2\text{O}_3), CaO, and (\text{SiO}_2). To reveal the kinetic stages of electron physisorption, we moreover study the time evolution of the image state occupancy and the energy-resolved desorption flux. Depending on the potential depth and the surface temperature we identify two generic scenarios: (i)adsorption via trapping in shallow image states followed by relaxation to the lowest image state and desorption from that state via a cascade through the second strongly bound image state in not too deep potentials and (ii)adsorption via trapping in shallow image states but followed by a relaxation bottleneck retarding the transition to the lowest image state and desorption from that state via a one step process to the continuum in deep potentials.Comment: 12 pages, 7 figure

    Homalg: A meta-package for homological algebra

    Full text link
    The central notion of this work is that of a functor between categories of finitely presented modules over so-called computable rings, i.e. rings R where one can algorithmically solve inhomogeneous linear equations with coefficients in R. The paper describes a way allowing one to realize such functors, e.g. Hom, tensor product, Ext, Tor, as a mathematical object in a computer algebra system. Once this is achieved, one can compose and derive functors and even iterate this process without the need of any specific knowledge of these functors. These ideas are realized in the ring independent package homalg. It is designed to extend any computer algebra software implementing the arithmetics of a computable ring R, as soon as the latter contains algorithms to solve inhomogeneous linear equations with coefficients in R. Beside explaining how this suffices, the paper describes the nature of the extensions provided by homalg.Comment: clarified some points, added references and more interesting example

    Toric Construction of Global F-Theory GUTs

    Full text link
    We systematically construct a large number of compact Calabi-Yau fourfolds which are suitable for F-theory model building. These elliptically fibered Calabi-Yaus are complete intersections of two hypersurfaces in a six dimensional ambient space. We first construct three-dimensional base manifolds that are hypersurfaces in a toric ambient space. We search for divisors which can support an F-theory GUT. The fourfolds are obtained as elliptic fibrations over these base manifolds. We find that elementary conditions which are motivated by F-theory GUTs lead to strong constraints on the geometry, which significantly reduce the number of suitable models. The complete database of models is available at http://hep.itp.tuwien.ac.at/f-theory/. We work out several examples in more detail.Comment: 35 pages, references adde

    Excitation Enhancement of a Quantum Dot Coupled to a Plasmonic Antenna

    Full text link
    Plasmonic antennas are key elements to control the luminescence of quantum emitters. However, the antenna's influence is often hidden by quenching losses. Here, the luminescence of a quantum dot coupled to a gold dimer antenna is investigated. Detailed analysis of the multiply excited states quantifies the antenna's influence on the excitation intensity and the luminescence quantum yield separately

    Nonequilibrium fluctuation-dissipation relations for one- and two-particle correlation functions in steady-state quantum transport

    Full text link
    We study the non-equilibrium (NE) fluctuation-dissipation (FD) relations in the context of quantum thermoelectric transport through a two-terminal nanodevice in the steady-state. The FD relations for the one- and two-particle correlation functions are derived for a model of the central region consisting of a single electron level. Explicit expressions for the FD relations of the Green's functions (one-particle correlations) are provided. The FD relations for the current-current and charge-charge (two-particle) correlations are calculated numerically. We use self-consistent NE Green's functions calculations to treat the system in the absence and in the presence of interaction (electron-phonon) in the central region. We show that, for this model, there is no single universal FD theorem for the NE steady state. There are different FD relations for each different class of problems. We find that the FD relations for the one-particle correlation function are strongly dependent on both the NE conditions and the interactions, while the FD relations of the current-current correlation function are much less dependent on the interaction. The latter property suggests interesting applications for single-molecule and other nanoscale transport experiments.Comment: This revised version is now accepted for publication in the Journal of Chemical Physics (March 2014). arXiv admin note: text overlap with arXiv:1305.507

    Thermal field desorption spectroscopy of chemisorbed hydrogen for a single step site

    Get PDF
    The steady state molecular hydrogen ion yield from a single atomic step site of a [110]-oriented tungsten and of a [100]-oriented rhodium crystal is determined as a function of surface temperature using mass and energy resolved probe hole field ion microscopy. A second order kinetic model is developed to fit the experimental data thus obtaining the hydrogen binding energy. For local fields of about 3 V/Ă… the data are close to values obtained from thermal desorption spectroscopy. A comparison is made with calculations of the field-adsorption binding energy of atomic hydrogen on a jellium surface based on density functional theory

    Three particles in a finite volume: The breakdown of spherical symmetry

    Full text link
    Lattice simulations of light nuclei necessarily take place in finite volumes, thus affecting their infrared properties. These effects can be addressed in a model-independent manner using Effective Field Theories. We study the model case of three identical bosons (mass m) with resonant two-body interactions in a cubic box with periodic boundary conditions, which can also be generalized to the three-nucleon system in a straightforward manner. Our results allow for the removal of finite volume effects from lattice results as well as the determination of infinite volume scattering parameters from the volume dependence of the spectrum. We study the volume dependence of several states below the break-up threshold, spanning one order of magnitude in the binding energy in the infinite volume, for box side lengths L between the two-body scattering length a and L = 0.25a. For example, a state with a three-body energy of -3/(ma^2) in the infinite volume has been shifted to -10/(ma^2) at L = a. Special emphasis is put on the consequences of the breakdown of spherical symmetry and several ways to perturbatively treat the ensuing partial wave admixtures. We find their contributions to be on the sub-percent level compared to the strong volume dependence of the S-wave component. For shallow bound states, we find a transition to boson-diboson scattering behavior when decreasing the size of the finite volume.Comment: 21 pages, 4 figures, 2 table

    Surface states and the charge of a dust particle in a plasma

    Full text link
    We investigate electron and ion surface states of a negatively charged dust particle in a gas discharge and identify the charge of the particle with the electron surface density bound in the polarization-induced short-range part of the particle potential. On that scale, ions do not affect the charge. They are trapped in the shallow states of the Coulomb tail of the potential and act only as screening charges. Using orbital-motion limited electron charging fluxes and the particle temperature as an adjustable parameter, we obtain excellent agreement with experimental data.Comment: 4 pages, 3 figures, slightly revised manuscript including radius dependence of the particle charg
    • …
    corecore